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Abstract

In this paper, firstly, we obtain an inequality in Lγ analogue concerning the polar derivative for

a polynomial p(ξ) =

m∑
ν=0

cνξ
ν of degree m having no zero in |ξ| < r, r ≥ 1 proved by Govil et

al. [15]. Secondly, we also prove Lγ version for the polar derivative of an ordinary inequality
for a polynomial having all its zeros in |ξ| ≤ r, r ≤ 1 proved in that same paper. Our results
generalize and improve some known inequalities.
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1 Introduction

We consider Pm the class of polynomials p(ξ) of degree m. For p ∈ Pm, we denote

∥p∥γ =

{
1

2π

∫ 2π

0

|p(eiθ)|γdθ
} 1

γ

, γ > 0. (1)

According to a fact of analysis [25, 26], we have

lim
γ→∞

{
1

2π

∫ 2π

0

|p(eiθ)|γdθ
} 1

γ

= max
|ξ|=1

|p(ξ)|. (2)

Hence, we can duly denote
∥p∥∞ = max

|ξ|=1
|p(ξ)|. (3)

In addition, if we denote ∥p∥0 = exp

{
1

2π

∫ 2π

0
log|p(eiθ)|dθ

}
, then a simple calculation shows that,

lim
γ→0+

∥p∥γ = ∥p∥0.

If p ∈ Pm, Bernstein [6] proved that,

∥p′∥∞ ≤ m∥p∥∞. (4)

Equality holds in inequality (4) for p(ξ) = αξm, α ̸= 0. By letting γ → ∞, inequality (4) can be
obtained from the inequality,

∥p′∥γ ≤ m∥p∥γ , γ > 0. (5)

Zygmund [28] obtained inequality (5) for γ ≥ 1 while Arestov [1] proved for 0 < γ < 1.

If p ∈ Pm has no zero in |ξ| < 1, then (4) and (5) can be respectively replaced by

∥p′∥∞ ≤ m

2
∥p∥∞, (6)

and
∥p′∥γ ≤ m

∥1 + ξ∥γ
∥p∥γ , γ > 0. (7)

Erdöx first conjectured inequality (6) and later verified by Lax [18], whereas de Brujin [7] proved
inequality (7) for γ ≥ 1 while Rahman and Schmeisser [23] proved that (7) stays valid for
0 < γ < 1.

For the case, if p ∈ Pm has all its zeros in |ξ| ≤ 1, Turán [27] showed

∥p′∥∞ ≥ m

2
∥p∥∞. (8)

Equality holds for inequalities (6) and (8) for p(ξ) = α+ βξm, such that |α| = |β|.

Malik [19] generalized (6) by obtaining that if p ∈ Pm has no zero in |ξ| < r, r ≥ 1 then,

∥p′∥∞ ≤ m

1 + r
∥p∥∞. (9)
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Equality holds in inequality (9) for p(ξ) = (ξ + r)m.

Govil and Rahman [14] extended inequality (9) into Lγ analogue by obtaining that

∥p′∥γ ≤ m

∥r + ξ∥γ
∥p∥γ , γ ≥ 1. (10)

Similar extension was made by Gardner and Weems [11] and Rather [24] independently for
0 < γ < 1 and proved that,

∥p′∥γ ≤ m

∥r + ξ∥γ
∥p∥γ , 0 < γ < 1. (11)

Under the same hypothesis of the polynomial, Govil et al. [15] improved (9) by proving that,

∥p′∥∞ ≤ m

{
m|c0|+ r2|c1|

m|c0|(1 + r2) + 2r2|c1|

}
∥p∥∞. (12)

Aziz and Rather [4] provides the extension of inequality (12) to Lγ version by proving that for
every γ > 0,

∥p′∥γ ≤ m

∥δr,1 + ξ∥γ
∥p∥γ , (13)

where,

δr,1 =
m|c0|r2 + |c1|r2

m|c0|+ r2|c1|
. (14)

Malik [19] obtained the generalization of (8) by proving that if p ∈ Pm has all its zeros in |ξ| ≤ r,
r ≤ 1, then,

∥p′∥∞ ≥ m

1 + r
∥p∥∞. (15)

Malik [20] generalized inequality (15), where the inequality involves integral mean of |p(ξ)| and
|p′(ξ)| on |ξ| = 1. In fact, he showed that if p ∈ Pm has all its zeros in |ξ| ≤ 1, then for every γ > 0,

∥p′∥γ ≥ m

∥1 + ξ∥γ
∥p∥γ . (16)

Aziz and Rather [4] further generalized (16) by proving that,

m

∥∥∥∥ p

p′

∥∥∥∥
γ

≤ ∥1 + tr,1ξ∥γ , (17)

where,

tr,1 =
m|cm|r2 + |cm−1|
m|cm|+ |cm−1|

. (18)

By involving certain coefficients of the polynomial, Govil et al. [15] obtained the following two
results, which the first generalizes (9) and (12) while the second (15).

Theorem 1.1. If p ∈ Pm non-vanishing in |ξ| < r, r ≥ 1, then,

∥p′∥∞ ≤ m

1 + r

(1− |λ|)(1 + r2|λ|) + r(m− 1)|l − λ2|
(1− |λ|)(1− r + r2 + r|λ|) + r(m− 1)|l − λ2|

∥p∥∞, (19)

where,

λ =
r

m

c1
c0

, and l =
2r2

m(m− 1)

c2
c0

.
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Theorem 1.2. If p ∈ Pm having all its zeros in |ξ| ≤ r, r ≤ 1, then,

∥p′∥∞ ≥ m

1 + r

(1− |ω|)(1 + r2|ω|) + r(m− 1)|Ω− ω2|
(1− |ω|)(1− r + r2 + r|ω|) + r(m− 1)|Ω− ω2|

∥p∥∞, (20)

where,

ω =
1

mr

c̄m−1

c̄m
, and Ω =

2

m(m− 1)r2
c̄m−2

c̄m
. (21)

Now, we define the polar derivative of the polynomial p(ξ) of degreemwith respect to α such
that α is a complex number or real number, then,

Dαp(ξ) = mp(ξ) + (α− ξ)p′(ξ).

This polynomial Dαp(ξ) will be of degree at most m − 1 and generalizes the ordinary derivative
p′(ξ) as,

lim
α→∞

Dαp(ξ)

α
= p′(ξ).

Aziz [2] extends inequality (9) to polar derivative version by obtaining the following result.

Theorem 1.3. If p(ξ) ∈ Pm non-vanishing in |ξ| < r, r ≥ 1, then for any real or complex number α with
|α| ≥ 1,

∥Dαp∥∞ ≤ m

(
|α|+ r

1 + r

)
∥p∥∞. (22)

It is clearly of interest to prove the Lγ inequalities for polar derivative of the polynomial. Like-
wise, Govil et al. [13] generalize inequality (7) proved by de Brujin [7] and (22) due to Aziz [2]
for r = 1 by proving,

Theorem 1.4. If p(ξ) ∈ Pm has no zero in |ξ| < 1, then for all real or complex number α with |α| ≥ 1 and
for γ ≥ 1,

∥Dαp∥γ ≤ m
(|α|+ 1)

∥1 + ξ∥γ
∥p∥γ . (23)

Further, Aziz et al. [5] extended (22) due to Aziz [2] to Lγ analogue for the polar derivative
by obtaining,

Theorem 1.5. If p(ξ) ∈ Pm has no zero in |ξ| < r, r ≥ 1, then for γ ≥ 1 and for any real or complex
number α with |α| ≥ 1,

∥Dαp∥γ ≤ m
(|α|+ r)

∥r + ζ∥γ
∥p∥γ . (24)

On the other hand, Aziz and Rather [3] obtained an extension of (15) to polar derivative. In
fact, he proved the following result.

Theorem 1.6. If p(ξ) ∈ Pm has all its zeros in |ξ| ≤ r, r ≤ 1, then for all real or complex number α with
|α| ≥ k,

∥Dαp∥∞ ≥ m

(
|α| − r

1 + r

)
∥p∥∞. (25)

Dewan et al. [8] recently proved the result below which gives the extension of inequality (25)
to Lγ norm inequality.
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Theorem 1.7. If p ∈ Pm has all its zeros in |ξ| ≤ r, r ≤ 1, then for any real or complex number α with
|α| ≥ r and for every γ > 0,

∥Dαp∥∞ ≥ m
(|α| − r)

∥1 + rζ∥γ
∥p∥γ . (26)

More information on the literature can be availed on the recent book of Gardner et. al [9].

2 Main Results

In this paper, we shall obtainLγ norm inequality for the polar derivative of polynomial p ∈ Pm.
Our results give implications to several known inequalities along with the inequalities we have
discussed above.

We first prove the following result which is theLγ analogue for the polar derivative of Theorem
1.1. It not only generalizes Theorem 1.1 but also improves inequality (24) due to Aziz et al. [5] and
a result due to Mir and Ahmad [22, Corollary 1] particularly for l = 1 directly, while its ordinary
version improves inequalities (10) and (13).

Theorem 2.1. If p ∈ Pm has no zero in |ξ| < r, r ≥ 1, then for any real or complex number αwith |α| ≥ 1
and for every γ > 0,

∥Dαp∥γ ≤ m
(C + |α|)
∥C + ξ∥γ

∥p∥γ , (27)

where,

C =
r(1− |λ|)(|λ|+ r2) + r(n− 1)|l − λ2|
(1− |λ|)(1 + |λ|r2) + r(n− 1)|l − λ2|

, (28)

λ =
r

m

c1
c0

, and l =
2r2

m(m− 1)

c2
c0

,

such that,
|λ| ≤ 1, and (m− 1)|l − λ2| ≤ 1− |λ|2.

Remark 2.1. It is of interest to verify the fact,

C ≥ r, (29)

and
C ≥ δr,1, (30)

where r ≥ 1 and C and δr,1 are as defined in (28) of Theorem 2.1 and inequality (14) respectively.

In order to verify C ≥ r, it is sufficient to show that,

(1− |λ|)(|λ|+ r2) + r(m− 1)|l − λ2|
(1− |λ|)(1 + |λ|r2) + r(m− 1)|l − λ2|

≥ 1,

i.e. |λ|+ r2 ≥ 1 + |λ|r2,
i.e. r2(1− |λ|) ≥ 1− |λ|,
i.e. r2 ≥ 1,

since 1− |λ| ≥ 0 (by Lemma 3.1) and r ≥ 1.
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Further, we have

δr,1 =
m|c0|r2 + |c1|r2

m|c0|+ |c1|r2
=

r + |λ|
r + |λ|r2

,

where λ is as defined in Theorem 2.1.
To show that C ≥ δr,1, it is sufficient enough by showing that,

r(1− |λ|)(|λ|+ r2) + r2(m− 1)|l − λ2|
(1− |λ|)(1 + |λ|r2) + r(m− 1)|l − λ2|

≥ r + |λ|
r + |λ|r2

,

which implies,

(r − 1)

[
(1− |λ|)

{
r3|λ|(r + 1) + r2|λ|2 + r3 + |λ|(r + 1)

}
+ r(m− 1)|l − λ2|

{
r + |λ|(r2 + r + 1)

}]
≥ 0,

from which we eventually obtain,

(1− |λ|)
{
r4|λ|+ r3(|λ|+ 1) + r2|λ|2 + r|λ|+ |λ|

}
+ r(m− 1)|l − λ2|

{
r2|λ|+ r(|λ|+ 1) + |λ|

}
≥ 0,

which is true by the fact that |λ| ≤ 1, since by Lemma 3.1.

Remark 2.2. Inequality (27) of Theorem 2.1 is an improvement of inequality (24) due to Aziz et al. [5]
and it follows on applying the fact of inequality (29) and Lemma 3.5 with a = |α| ≥ 1, b = C and c = r,

|α|+ C{∫ 2π

0
|eiθ + C|γdθ

} 1
γ

≤ |α|+ r{∫ 2π

0
|eiθ + r|γdθ

} 1
γ

,

which clearly shows that inequality (27) sharpens (24).

Following similar argument as above and noting the fact of inequality (30), it is clear that inequality (27)
of Theorem 2.1 further improves a result by Mir and Ahmad [22, Corollary 1] particularly for l = 1.

Remark 2.3. When dividing by |α| on both sides of (27) and letting |α| → ∞, we obtain the following
corollary which is an improvement of inequalities (10) and (13) recently proved by Krishnadas and Chanam
[17, Theorem 1].

Corollary 2.1. If p ∈ Pm has no zero in |ξ| < r, r ≥ 1, then for every γ > 0,

∥p′∥γ ≤ m

∥C + ξ∥γ
∥p∥γ , (31)

where C is as defined in Theorem 2.1.

Remark 2.4. Further, if we let γ → ∞ in inequality (31), we obtain,

∥p′∥∞ ≤ m

C + 1
∥p∥∞, (32)

which is inequality (19) of Theorem 1.1 due to Govil et al. [15].
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Remark 2.5. It follows readily from the fact (29) and (30) of Remark 2.1 that inequality (31) of Corollary
2.1 improves both inequalities (9) and (12) respectively proved by Malik [19] and Govil et al. [15].

Next, we consider the Lγ analogue for polar derivative of the polynomials p ∈ Pm having all
its zeros in |ξ| ≤ r, r ≤ 1 and we prove the following theorem which gives an improvement of
inequality (26) due to Dewan et al. [8] and a result due to Mir [21, Corollary 1.2].

Theorem 2.2. If p ∈ Pm has all its zeros in |ξ| ≤ r, r ≤ 1, then for any real or complex number α with
|α| ≥ D and for every γ > 0,

∥Dαp∥γ ≥ m
(|α| −D)

∥1 +Dξ∥γ
∥p∥γ , (33)

where,

D = r
(1− |ω|)(|ω|+ r2) + r(n− 1)|Ω− ω2|
(1− |ω|)(1 + |ω|r2) + r(m− 1)|Ω− ω2|

, (34)

ω =
1

mr

c̄m−1

c̄m
, and Ω =

2

m(m− 1)r2
c̄m−2

c̄m
,

and
|ω| ≤ 1, and (m− 1)|Ω− ω2| ≤ 1− |ω|2.

Remark 2.6. To prove that,
D ≤ tr,1, (35)

where D and tr,1 are as defined in (34) in Theorem 2.2 and inequality (18) respectively. Since,

tr,1 =
m|cm|r2 + |cm−1|
m|cm|+ |cm−1|

=
r + |ω|
r + r2|ω|

,

D ≤ tr,1 implies
r(1− |ω|)(|ω|+ r2) + r2(m− 1)|Ω− ω2|
(1− |ω|)(1 + |ω|r2) + r(m− 1)|Ω− ω2|

≤ r + |ω|
r + r2|ω|

.

Simplifying the above inequality, we get

(r − 1)

[
(1− |ω|)

{
r3|ω|(r + 1) + r2|ω|2 + r(r2 + r + 1) + |ω|(r + 1)

}
+ r(m− 1)|Ω− ω2|

{
r + |ω|(r2 + r + 1)

}]
≤ 0.

Since r ≤ 1, we have

(1− |ω|)
{
r3|ω|(r + 1) + r2|ω|2 + r(r2 + r + 1) + |ω|(r + 1)

}
+ r(m− 1)|Ω− ω2|

{
r + |ω|(r2 + r + 1)

}
≥ 0,

and is true as |ω| ≤ 1 by Lemma 3.2.

Remark 2.7. Inequality (33) of Theorem 2.2 is an improvement of (26) due to Dewan et al. [8] and it
follows on applying the fact of inequality (35) and Lemma 3.6 with a = |α| ≥ 1, b = D and c = r,

|α| −D{∫ 2π

0
|1 +Deiθ|γdθ

} 1
γ

≥ |α| − r{∫ 2π

0
|1 + reiθ|γdθ

} 1
γ

,
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which clearly shows that inequality (33) sharpens (26).

Following similar argument as above and noting the fact of inequality (35), it is clear that inequality
(33) of Theorem 2.2 further improves a result due to Mir [21, Corollary 1.2].

Remark 2.8. When dividing both the sides of (33) by |α| and making |α| → ∞, we obtain a result proved
by Krishnadas and Chanam [17, Theorem 2] recently.

Corollary 2.2. If p ∈ Pm has all its zeros in |ξ| ≤ r, r ≤ 1, then for every γ > 0,

∥p′∥γ ≥ m

∥1 +Dξ∥γ
∥p∥γ , (36)

where D is as defined in Theorem 2.2.

Since |p′(eiθ)| ≤ ∥p′∥∞ for 0 ≤ θ < 2π, we can immediately obtain the following corollary.

Corollary 2.3. If p ∈ Pm has all its zeros in |ξ| ≤ r, r ≤ 1, then for every γ > 0,

∥p′∥∞ ≥ m

∥1 +Dξ∥γ
∥p∥γ , (37)

where D is defined in Theorem 2.2.

Remark 2.9. From the fact that D ≤ tr,1, Corollary 2.3 is an improvement of inequality (17) proved by
Aziz and Rather [4, Corollary 4].

Remark 2.10. We know by definition,

m

∥1 +Dξ∥∞
= m lim

γ→∞

{
1

2π

∫ 2π

0

|1 +Deiθ|γdθ
}− 1

γ

=
m

1 +D
,

by (34), it further simplifies to

m

1 + r

(1− |ω|)(1 + r2|ω|) + r(m− 1)|Ω− ω2|
(1− |ω|)(1− r + r2 + r|ω|) + r(m− 1)|Ω− ω2|

. (38)

Thus, when letting γ → ∞, (37) reduces to (20) of Theorem 1.2.

Remark 2.11. The ordinary derivative inequality form (20) of inequality (37) obtained from taking the
limit as γ → ∞ in (37) is an improvement of inequality (15) due toMalik [19]. To show this, it is sufficient
that,

(1− |ω|)(1 + r2|ω|) + r(m− 1)|Ω− ω2|
(1− |ω|)(1− r + r2 + r|ω|) + r(m− 1)|Ω− ω2|

≥ 1,

which is equivalent to

(1− |ω|)(1− r) ≥ 0, which is true by hypotheses of Theorem 2.2.

3 Lemmas

In proving our results, the following lemmas are needed.
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Lemma 3.1. If p ∈ Pm has no zero in |ξ| < r, r ≥ 1, then,

C|p′(ξ)| ≤ |y′(ξ)|, (39)

where here and elsewhere y(ξ) = ξmp( 1
ξ
),

C =
r(1− |λ|)(|λ|+ r2) + r(m− 1)|l − λ2|
(1− |λ|)(1 + |λ|r2) + r(m− 1)|l − λ2|

,

λ =
r

m

c1
c0

, and l =
2r2

m(m− 1)

c2
c0

,

such that,
|λ| ≤ 1, and (m− 1)|l − λ2| ≤ 1− |λ|2.

Govil et al. [15] obtained the above lemma.

Lemma 3.2. If p ∈ Pm has all its zeros in |ξ| ≤ r, r ≤ 1, then on |ξ| = 1,

|y′(ξ)| ≤ D|p′(ξ)|, (40)

where,

D = r
(1− |ω|)(|ω|+ r2) + r(m− 1)|Ω− ω2|
(1− |ω|)(1 + |ω|r2) + r(m− 1)|Ω− ω2|

,

ω =
1

mr

c̄m−1

c̄m
, and Ω =

2

m(m− 1)r2
c̄m−2

c̄m
,

and
|ω| ≤ 1, and (m− 1)|Ω− ω2| ≤ 1− |ω|2.

This lemma is due to Krishnadas and Chanam [17].

Lemma 3.3. Let ξ1 and ξ2 be any two complex numbers not depending on β, β is real. Then, for each
γ > 0, ∫ 2π

0

∣∣ξ1 + ξ2e
iβ
∣∣γ dβ =

∫ 2π

0

∣∣|ξ1|+ |ξ2|eiβ
∣∣γ dβ. (41)

This lemma is due to Gardner and Govil [10].

Govil and Kumar [12] obtains the following two lemmas.

Lemma 3.4. Let p, q be any two positive numbers such that p ≥ qx, where x ≥ 1. If β is any real number
in [0, 2π], then,

p+ qy

x+ y
≤

∣∣∣∣p+ qeiβ

x+ eiβ

∣∣∣∣ , (42)

for y ≥ 1.

Lemma 3.5. If a ≥ 1, b ≥ c ≥ 1 and γ > 0, then,

a+ b{∫ 2π

0
|eiθ + b|γdθ

} 1
γ

≤ a+ c{∫ 2π

0
|eiθ + c|γdθ

} 1
γ

. (43)
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Lemma 3.6. If a ≥ c, b ≤ c ≤ 1 and γ > 0, then,

a− b{∫ 2π

0
|1 + beiθ|γdθ

} 1
γ

≥ a− c{∫ 2π

0
|1 + ceiθ|γdθ

} 1
γ

. (44)

Proof. When a = c, inequality (44) follows trivially.

Suppose a > c, then it suffices to show that,∫ 2π

0

(
|1 + beiθ|
a− b

)γ

dθ ≤
∫ 2π

0

(
|1 + ceiθ|
a− c

)γ

dθ,

for which we will show, (
|1 + beiθ|
a− b

)γ

≤
(
|1 + ceiθ|
a− c

)γ

, (45)

for all θ ∈ [0, 2π] and a > x, b ≤ c ≤ 1.

To prove (45), we take the function

f : x → |1 + xeiθ|
a− x

, a > x,

on [0, 1], and prove that f is non-decreasing. We can see that,

f ′(x) ≥ 0 if and only if ax+ 1 + (a+ x) cos θ ≥ 0,

which is true, because if ax + 1 + (a + x) cos θ < 0, and with simple rearrangement, the above
implies,

a < −1 + x cos θ

x+ cos θ
. (46)

Since |1 + xeiθ| ≥ 0, ∀ x ∈ R, then the r.h.s of (46) is equal to or less than x, implying that a < x,
which contradicts to the fact that a ≥ x. Thus for all real values of θ, we have ax+1+(a+x) cos θ ≥
0, implies that f and fγ are increasing, from which inequality (44) follows.

Lemma 3.7. Let p(ξ) ∈ Pm and y(ξ) = ξmp( 1
ξ
), then for every β, 0 ≤ β < 2π and γ > 0,

∫ 2π

0

∫ 2π

0

|p′(eiθ) + eiβy′(eiθ)|γdθdβ ≤ 2πmγ

∫ 2π

0

|p(eiθ)|γdθ. (47)

This lemma was obtained by Aziz and Rather [4].
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4 Proof of Theorems

Proof of Theorem 2.1:
For γ > 0, we have(∫ 2π

0

∣∣Dαp(e
iθ)

∣∣γ dθ)(∫ 2π

0

∣∣C + eiβ
∣∣γ dβ)

=

∫ 2π

0

∫ 2π

0

∣∣C + eiβ
∣∣γ ∣∣Dαp(e

iθ)
∣∣γ dθdβ,

=

∫ 2π

0

∫ 2π

0

∣∣C + eiβ
∣∣γ ∣∣mp(eiθ)− eiθp′(eiθ) + αp′(eiθ)

∣∣γ dθdβ,
≤

∫ 2π

0

∫ 2π

0

∣∣C + eiβ
∣∣γ {∣∣mp(eiθ)− eiθp′(eiθ)

∣∣+ |α||p′(eiθ)|
}γ

dθdβ,

≤
∫ 2π

0

∫ 2π

0

∣∣C + eiβ
∣∣γ {|y′(eiθ)|+ |α||p′(eiθ)|

}γ
dθdβ. (48)

Now by Lemma 3.1, we have
C|p′(eiθ)| ≤ |y′(eiθ)|. (49)

Further, we can verify that,∣∣∣|y′(eiθ)|+ eiβ |p′(eiθ)|
∣∣∣ = ∣∣∣|p′(eiθ)|+ eiβ |y′(eiθ)|

∣∣∣. (50)

Comparing with Lemma 3.3, we have

p ≡ |y′(eiθ)|, q ≡ |p′(eiθ)| and x ≡ C.

Also by assumption, |α| > 1. The role of y is taken by |α| i.e., y = |α|. By Lemma 3.4, we have

p+ qy

x+ y
≤

∣∣∣∣p+ qeiβ

x+ eiβ

∣∣∣∣, ∀ β ∈ [0, 2π],

which implies,
|y′(eiθ)|+ |α||p′(eiθ)|

(C + |α|)
≤

∣∣∣∣ |y′(eiθ)|+ |p′(eiθ)|eiβ

(C + eiβ)

∣∣∣∣. (51)

By cross multiplication, we get

|C + eiβ |
{
|y′(eiθ)|+ |α||p′(eiθ)|

}
≤ (C + |α|)

{∣∣|y′(eiθ)|+ eiβ |p′(eiθ)|
∣∣} ,

and using inequality (50), we have

|C + eiβ |
{
|y′(eiθ)|+ |α||p′(eiθ)|

}
≤ (C + |α|)

{∣∣|p′(eiθ)|+ eiβ |y′(eiθ)|
∣∣} . (52)

Using inequality (52) in (48) and by Lemma 3.3, we get∫ 2π

0

|Dαp(e
iθ)|γdθ

∫ 2π

0

|C + eiβ |γdβ

≤ (C + |α|)γ
∫ 2π

0

∫ 2π

0

∣∣|p′(eiθ)|+ eiβ |y′(eiθ)|
∣∣γ dθdβ,

= (C + |α|)γ
∫ 2π

0

∫ 2π

0

∣∣p′(eiθ) + eiβy′(eiθ)
∣∣γ dθdβ. (53)
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Applying Lemma 3.7 to (53) gives,(∫ 2π

0

|Dαp(e
iθ)|γdθ

)(∫ 2π

0

|C + eiβ |γdβ
)

≤ (C + |α|)γ2πmγ

(∫ 2π

0

|p(eiθ)|γdθ
)
,

which is equivalent to(∫ 2π

0

|Dαp(e
iθ)|γdθ

) 1
γ

≤ m
(C + |α|)(

1
2π

∫ 2π

0
|C + eiβ |γdβ

) 1
γ

(∫ 2π

0

|p(eiθ)|γdθ
) 1

γ

, (54)

which completes the proof of Theorem 2.1.

Proof of Theorem 2.2:
Since p(ξ) has all its zeros in |ξ| ≤ r, r ≤ 1, p′(ξ) has all its zeros in |ξ| ≤ r, r ≤ 1. Hence, by
Gauss-Lucas Theorem, the polynomial

ξm−1p′
(
1

ξ̄

)
= my(ξ)− ξy′(ξ), (55)

has all its zeros in |ξ| ≥ 1

r
, 1
r
≥ 1.

Further, since p(ξ) has all its zeros in |ξ| ≤ r, r ≤ 1, by Lemma 3.2, we have

|y′(ξ)| ≤ D|p′(ξ)| for |ξ| = 1, (56)

where D is as defined by (34).

For |ξ| = 1, we also have
|p′(ξ)| =

∣∣∣my(ξ)− ξy′(ξ)
∣∣∣. (57)

Using (56) in (57), we have on |ξ| = 1,

|y′(ξ)| ≤ D
∣∣∣my(ξ)− ξy′(ξ)

∣∣∣. (58)

Therefore, it follows from (56) that the function

ϕ(ξ) =
ξy′(ξ)

D {my(ξ)− ξy′(ξ)}
, (59)

is analytic in |ξ| ≤ 1, |ϕ(ξ)| ≤ 1 on |ξ| = 1 and ϕ(0) = 0. Thus, the function 1+Dϕ(ξ) is subordinate
to the function 1 +Dξ for |ξ| ≤ 1. Hence, from a well-known property of subordination [16], we
have for every γ > 0, ∫ 2π

0

∣∣1 +Dϕ(eiθ)
∣∣γdθ ≤

∫ 2π

0

∣∣1 +Deiθ
∣∣γdθ. (60)

Now,

1 +Dϕ(ξ) = 1 +
ξy′(ξ)

my(ξ)− ξy′(ξ)
=

ξy(ξ)

my(ξ)− ξy′(ξ)
, (61)

which implies for |ξ| = 1,

|my(ξ)| =
∣∣1 +Dϕ(ξ)

∣∣∣∣my(ξ)− ξy′(ξ)
∣∣,

=
∣∣1 +Dϕ(ξ)

∣∣∣∣p′(ξ)∣∣. (by (57)) (62)
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Since |p(ξ)| = |y(ξ)| on |ξ| = 1, we have from the proceeding inequality

m|p(ξ)| =
∣∣1 +Dϕ(ξ)

∣∣|p′(ξ)| on |ξ| = 1. (63)

Also, by the definition of polar derivative of a polynomial, we have

Dαp(ξ) = mp(ξ) + (α− ξ)p′(ξ),

from which we have for |ξ| = 1,

|Dαp(ξ)| ≥
∣∣∣|α||p′(ξ)| − |mp(ξ)− ξp′(ξ)|

∣∣∣,
=

∣∣∣|α||p′(ξ)| − |y′(ξ)|
∣∣∣, [

since for |ξ| = 1, |y′(ξ)| = |mp(ξ)− ξp′(ξ)|
]

(64)

By using (56) on r.h.s of (64), we get

|α||p′(ξ)| − |y′(ξ)| ≥
(
|α| −D

)
|p′(ξ)|,

which is non-negative, since |α| ≥ D. Thus, (64) gives

|Dαp(ξ)| ≥
(
|α| −D

)
|p′(ξ)|. (65)

Using (65) in (63), we get

m|p(ξ)| ≤
∣∣1 +Dϕ(ξ)

∣∣ |Dαp(ξ)|(
|α| −D

) , for |ξ| = 1.

From which equivalently we conclude that for each θ, 0 ≤ θ < 2π, and for each γ > 0,

mγ(|α| −D)γ
∫ 2π

0

|p(eiθ)|γ

|Dαp(eiθ)|γ
dθ ≤

∫ 2π

0

|1 +Dϕ(eiθ)|γdθ, (66)

which on using (60) gives

m(|α| −D)

(∫ 2π

0

|p(eiθ)|γ

|Dαp(eiθ)|γ
dθ

) 1
γ

≤
(∫ 2π

0

|1 +Deiθ|γdθ
) 1

γ

,

which is equivalent to

(∫ 2π

0

|Dαp(e
iθ)|γdθ

) 1
γ

≥ m
(|α| −D)(

1
2π

∫ 2π

0
|1 +Deiθ|γdθ

) 1
γ

(∫ 2π

0

|p(eiθ)|γdθ
) 1

γ

, (67)

which completes the proof of Theorem 2.2.
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